248 research outputs found

    Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy

    Get PDF
    OBJECTIVES: We sought to define the role of norepinephrine and epinephrine in the development of cardiac hypertrophy and to determine whether the absence of circulating catecholamines alters the activation of downstream myocardial signaling pathways. BACKGROUND: Cardiac hypertrophy is associated with elevated plasma catecholamine levels and an increase in cardiac morbidity and mortality. Although considerable evidence suggests that G-protein-coupled receptors are involved in the hypertrophic response, it remains controversial whether catecholamines are required for the development of in vivo cardiac hypertrophy. METHODS: We performed transverse aortic constriction (TAC) in dopamine beta-hydroxylase knockout mice (Dbh(-/-), genetically altered mice that are completely devoid of endogenous norepinephrine and epinephrine) and littermate control mice. After induction of cardiac hypertrophy, the mitogen-activated protein kinase (MAPK) signaling pathways were measured in pressure-overloaded/wild-type and Dbh(-/-) hearts. RESULTS: Compared with the control animals, cardiac hypertrophy was significantly blunted in Dbh(-/-) mice, which was not associated with altered cardiac function, as assessed by transthoracic echocardiography in conscious mice. The extracellularly regulated kinase (ERK 1/2), c-jun-NH(2)-terminal kinase (JNK) and p38 MAPK pathways were all activated by two- to threefold after TAC in the control animals. In contrast, induction of the three pathways (ERK 1/2, JNK and p38) was completely abolished in Dbh(-/-) mice. CONCLUSIONS: These data demonstrate a nearly complete requirement of endogenous norepinephrine and epinephrine for the induction of in vivo pressure-overload cardiac hypertrophy and for the activation of hypertrophic signaling pathways

    Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate

    Get PDF
    The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system

    Effects of balloon injury on neointimal hyperplasia in steptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.

    Get PDF
    BACKGROUND: The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown. METHODS AND RESULTS: Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adjunct insulin therapy. To study the effect of balloon injury in nondiabetic rats with hyperinsulinemia, pancreatic islets were transplanted under the kidney capsule in normal rats. Glucose did not increase VSMC proliferation and migration in vitro. In contrast, insulin induced a significant increase in VSMC proliferation and migration in cell cultures. Furthermore, in VSMC culture, insulin increased MAPK activation. A reduction in neointimal hyperplasia was consistently documented after vascular injury in hyperglycemic streptozotocin-induced diabetic rats. Insulin therapy significantly increased neointimal hyperplasia in these rats. This effect of hyperinsulinemia was totally abolished by transfection on the arterial wall of the N17H-ras-negative mutant gene. Finally, after experimental balloon angioplasty in hyperinsulinemic nondiabetic islet-transplanted rats, a significant increase in neointimal hyperplasia was observed. CONCLUSIONS: In rats with streptozotocin-induced diabetes, balloon injury was not associated with an increase in neointimal formation. Exogenous insulin administration in diabetic rats and islet transplantation in nondiabetic rats increased both blood insulin levels and neointimal hyperplasia after balloon injury. Hyperinsulinemia through activation of the ras/MAPK pathway, rather than hyperglycemia per se, seems to be of crucial importance in determining the exaggerated neointimal hyperplasia after balloon angioplasty in diabetic animals

    Late onset of hypoxemia due to a pulmonary arteriovenous malformation during selective estrogen receptor modulator therapy.

    Get PDF
    A76-year-old woman with unexplained hypoxemia and severe exertional dyspnea was admitted to our department. The symptoms had appeared during tamoxifen therapy after resection of breast carcinoma; history revealed recurrent upper gastrointestinal bleeding, epistaxis, and a granddaughter deceased because of a cerebral arteriovenous malformation. Chest computed tomography scan showed the presence of a highly vascularized nodule in the right lower lobe. Right pulmonary artery angiography demonstrated a large pulmonary arteriovenous malformation (PAVM) (Online Video 1) with massive right-to-left shunt (A, B, C; Online Video 2); this confirmed the diagnosis of hereditary hemorrhagic telangiectasia (1). The arrows point to the right upper pulmonary vein. We decided to percutaneously close the PAVM. An occlusion test was performed before the procedure (D); O2 saturation rose from 87% to 96%. The PAVM was subsequently closed using a vascular occlusion device (E) with complete abolishment of the right-to-left shunt (F; Online Video 3). It is likely that selective estrogen receptor modulator therapy may have been responsible for the enlargement of the PAVM in our patient (2)

    Defective β-Adrenergic Receptor Signaling Precedes the Development of Dilated Cardiomyopathy in Transgenic Mice with Calsequestrin Overexpression

    Get PDF
    Calsequestrin is a high capacity Ca(2+)-binding protein in the junctional sarcoplasmic reticulum that forms a quaternary complex with junctin, triadin, and the ryanodine receptor. Transgenic mice with cardiac-targeted calsequestrin overexpression show marked suppression of Ca(2+)-induced Ca(2+) release, myocyte hypertrophy, and premature death by 16 weeks of age (Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., and Morad, M. (1998) J. Clin. Invest. 101, 1385-1393). To investigate whether alterations in intracellular Ca(2+) trigger changes in the beta-adrenergic receptor pathway, we studied calsequestrin overexpressing transgenic mice at 7 and 14 weeks of age. As assessed by echocardiography, calsequestrin mice at 7 weeks showed mild left ventricular enlargement, mild decreased fractional shortening with increased wall thickness. By 14 weeks, the phenotype progressed to marked left ventricular enlargement and severely depressed systolic function. Cardiac catheterization in calsequestrin mice revealed markedly impaired beta-adrenergic receptor responsiveness in both 7- and 14- week mice. Biochemical analysis in 7- and 14-week mice showed a significant decrease in total beta-adrenergic receptor density, adenylyl cyclase activity, and the percent high affinity agonist binding, which was associated with increased beta-adrenergic receptor kinase 1 levels. Taken together, these data indicate that alterations in beta-adrenergic receptor signaling precede the development of overt heart failure in this mouse model of progressive cardiomyopathy

    Insulin Resistance Predicts Severity of Coronary Atherosclerotic Disease in Non-Diabetic Patients

    Get PDF
    Background: Insulin resistance (IR) in patients with type 2 diabetes mellitus (T2DM) represents a predictor of coronary artery disease (CAD). However, how IR is able to impact the severity of coronary atherosclerosis in non-diabetic patients is unknown. Objectives. We investigated the relation between the IR and the extent and severity of coronary atherosclerosis in non-diabetic patients referred to coronary angiography (CA) Methods: Consecutive patients undergoing to CA for acute coronary syndromes or stable angina were analyzed. The IR was assessed by mean of the homeostasis model assessment of insulin resistance (HOMA-IR) whereas the SYNTAX score (SS) was used as index of the severity of coronary atherosclerosis Results: Overall, 126 patients were included, with a median SS of 12 (IQR 5.25–20.5). Patients were divided in four groups according to the distribution in quartiles of SS (SS1-2-3-4). A significant correlation between HOMA-IR and SS was observed, especially in women. A progressive increase of HOMA-IR was observed in parallel with the increasing severity (from SS1 to SS4) and extension (1-2-3-vessel disease) of coronary atherosclerosis. Multivariable analysis showed that the HOMA-IR was the strongest independent predictor of severe (SS4) and extensive (three-vessel disease) coronary atherosclerosis. Conclusion: Insulin resistance goes hand in hand with the extension and severity of coronary atherosclerosis in non-diabetic patients. The HOMA index is an independent predictor of three-vessel disease at CA. The HOMA index could be useful for risk stratification of CAD even in absence of T2D

    Industrial processing affects product yield and quality of diced tomato

    Get PDF
    The tomato industry has been searching for new genotypes with improved fruit production, both in the field and industrially processed, together with high-quality performance under sustainable management conditions. This research was carried out in Southern Italy with the aim of assessing the effects of industrial processing on the yield and quality of four tomato hybrids grown according to organic farming methods and addressed at dicing. MAX 14111 and HMX 4228 showed the highest values of field and processing yield as well as reduced sugars and fructose. MAX 14111 had the highest values of total solids and soluble solids, titratable acidity, fiber, energetic value, polyphenols, and also rutin, though not significantly different from Impact. HMX 4228 performed best in terms of sugar ratio, color and naringenin. Concerning the diced products, the sensorial qualities of the four hybrids differed significantly. Total polyphenols, naringenin and rutin in the tomato fruits were higher in the processed than in the raw product. The appreciable fruit yield and quality resulting from both field and processing phase represent a promising perspective for identifying improved tomato genotypes addressed at dicing
    • …
    corecore